
Project Analyzer:

Code analyses you didn't know about
©Copyright 2006, 2010, 2021 Aivosto Oy

www.aivosto.com

This article shows 12 advanced code analyses with Project Analyzer, an advanced code analyzer for the Visual Basic

programming language. These tips are written for experienced Project Analyzer users looking for new ways to analyze

their VB source code.

1. List parameters of a certain data type

Sometimes you might want to get a listing of all procedure parameters of a certain data type. Say you

want to know all Byte parameters, all parameters accepting MyClass or all ParamArrays.

1. Select Variables, Consts & parameters in the View menu or just press Shift+V to display the

Variables, constants and parameters window.

2. Uncheck Consts and Variables, keep Params.

3. In the Filter by combo, select Type.

4. In the text field to the right, enter the data type (Byte or any other data type).

5. Press Enter.

This trick also lets you find all ParamArrays or Optional parameters. Instead of Type, select Declaration,

and write ParamArray or Optional in the text field.

2. Find constants with the same value but different name

This feature lets you spot unintentional duplicates. You might have constants that are exactly for the same

purpose, yet their names differ. Suppose your code defines MAXUSERS=100 and MAX_USR=100.

When you need decide to change MAXUSERS, you probably need to change MAX_USR as well,

otherwise the code might fail. To fix this potential error, remove MAX_USR and use just MAX_USERS,

if they indeed are the same thing.

1. Press Shift+C to open the Constants and Enums window.

2. Select Same value, different name in the combo at the top.

Naturally, declaring different constants with the same value is completely OK if the purpose is different,

such as MAXUSERS=100 and MAXFILES=100.

In this window you can also find the opposite: Same name, different value. These are problem cases, since

the values differ. Your code might be using the wrong value.

By the way, VB6 defines two versions of vbCancel:

VBA.VbMsgBoxResult.vbCancel = 2
VBRUN.DragConstants.vbCancel = 0

Which one are you using? If you just write vbCancel, this defaults to 2. This is good for using with

MsgBox. However, your drag & drop code might fail if you just wrote vbCancel and not the fully qualified

form, either DragConstants.vbCancel or VBRUN.DragConstants.vbCancel!

https://www.aivosto.com/
https://www.aivosto.com/project/project.html
https://www.aivosto.com/project/project.html
https://www.aivosto.com/

Code analyses you didn't know about 2

3. Document a large Enum

Suppose you have a big and important Enum..End Enum definition containing 200 constants but no

documentation. You wish to check out which values the individual constants have and if they are all used.

1. Bring up the Enum in the hypertext view.

2. Right-click the name of the Enum and select Report.

You will get a listing such as this one:

Enum EFileDlgFlags in PicMain Value Reads

OFN_ALLOWMULTISELECT = &H200 512 0

OFN_CREATEPROMPT = &H2000 8192 0

OFN_FILEMUSTEXIST = &H1000 4096 1

OFN_HIDEREADONLY = &H4 4 2

OFN_NOCHANGEDIR = &H8 8 0

OFN_NODEREFERENCELINKS = &H100000 1048576 0

OFN_NONETWORKBUTTON = &H20000 131072 0

OFN_NOREADONLYRETURN = &H8000& 32768 1

OFN_NOTESTFILECREATE = &H10000 65536 0

OFN_OVERWRITEPROMPT = &H2 2 1

OFN_PATHMUSTEXIST = &H800 2048 2

OFN_READONLY = &H1 1 0

OFN_SHAREAWARE = &H4000 16384 0

OFN_OPENDEFAULTS = OFN_FILEMUSTEXIST Or

OFN_PATHMUSTEXIST Or OFN_HIDEREADONLY

6148 1

OFN_SAVEDEFAULTS = OFN_OVERWRITEPROMPT Or

OFN_PATHMUSTEXIST Or OFN_HIDEREADONLY Or

OFN_NOREADONLYRETURN

34822 0

In the Value column you can see the actual numeric value of each constant. In the Reads column you get

the number of times the constant is being used by your program. A zero value indicates an unused

constant. Check out to see if you could remove it or if it's worth keeping for future use.

4. Get a quick overview of a new program

Got a new legacy project to work on? Not sure about its structure? The Form.Show diagram gives a good

idea of what a program does and how it is structured. It shows the order in which the forms show each

other.

1. Press Ctrl+F7 to run Enterprise Diagrams.

2. Select Form.Show order in the combo box in the top-left corner.

3. Press Ctrl and + to add all forms to the diagram

4. Press View.

This diagram requires the Enterprise Edition. You can get a bit similar diagram in the Pro Edition via

Project Graph (press F7).

Code analyses you didn't know about 3

5. See how a class works on the inside

To learn how the methods of a class work together and which class-level variables they use, get a Class

cohesion diagram. This diagram shows method calls and variable usage within a single class, module or

form. No external calls are displayed, which keeps the diagram compact.

1. Press Ctrl+F7 to run Enterprise Diagrams.

2. Select Cohesion in the combo box in the top-left corner.

3. Double-click the class or module you wish to diagram.

4. Press View.

There's a sample below. It's actually from a form, not a regular class. A form is basically just a special

type of a class, so it serves as an example.

You can see how variable mbSettingPerm is shared by many procedures. SetPermissions is a kind of a

central procedure on this form. You can make a guess of what the variables are used for even if you

haven't read the code.

Note: This diagram requires the Enterprise Edition.

The intended use for a Class cohesion diagram is to find unrelated groups of methods and variables within

a class, which can then be split into a number of smaller classes. The idea is that each cohesive class

consists of just one group of related methods and variables. If there are several unrelated groups (having

no variable or method in common), the class should be split. Nothing prevents you from using the diagram

to just document some classes, their methods and variables, even if you don't intend to split the class.

Code analyses you didn't know about 4

6. List API callback functions

When you make use of advanced API calls, you sometimes need to provide a callback function. You use

the syntax AddressOf procedurename to pass a function pointer in a DLL call. Project Analyzer lets

you list these calls.

1. Press Shift+R or select References in the View menu to open the References window.

2. In the Type combo box, select Address

3. In the Source file and Target file combo boxes, select <All>.

4. Press Search to get all AddressOf references.

The resulting list includes all lines with the keyword AddressOf in them. As far as API callbacks are

concerned, this trick works best for classic VB, where the only use for AddressOf is indeed with API

callbacks. In VB.NET you can use AddressOf for other purposes as well, so the result list can contain

other things in addition to callbacks.

7. Run multi-project analyses via .lst files

If you ever need to analyze 50 or 100 individual projects, you will get sick of adding them manually via

Project Analyzer's Add project(s) button.

Don't worry, there's a solution. Create a .lst file with Notepad. In this file, list each project, project group

or solution file name you need to analyze like this:

c:\projects\proj1.vbp

c:\projects\proj2.vbp

c:\projects\proj3.vbg

Then just open the .lst file in Project Analyzer. This trick requires the Enterprise Edition.

8. Publish a code snippet on your web site

When you wish to publish a syntax-formatted code snippet on your web site or intranet, Project Analyzer

can give you the HTML.

1. Bring up the code you wish to publish in the hypertext view.

2. Select the lines you wish to publish.

3. Right-click and select Copy as HTML.

4. Paste the raw HTML to your HTML editor.

If you use a more advanced web page editor (Word, maybe) that accepts formatted input instead of raw

HTML, select Copy instead of Copy as HTML.

9. Hide comments

Someone has really spoilt your code with all those comments. The comments are all wrong and you can't

see the real code through the comments. How do you disable comments for a while? Make them white!

1. Select Hypertext options in the Options menu.

2. Select Comment.

3. In the color palette, click the white color box, then press Save.

All comments are suddenly invisible! Is the code any better now? To bring the comments back, do this:

4. Select Hypertext options in the Options menu.

5. Select Comment.

6. Click Default, then Save.

Code analyses you didn't know about 5

10. Classify windows and dialogs

What exactly are the dialogs, toolboxes and other windows in your program? Where are the forms with

menus and which forms have a Default or a Cancel button? The Form report tells you that. Note that this

report works with classic VB only. There is no support for VB.NET or VBA.

In the Report menu, select Form report. Here is a sample report and how you read it:

Form Cbox Min Max Border Menu Btn MDI
frmAboutBox Y - - Dialog - DC -
frmAddField Y - - Dialog - DC -
frmAddIndex Y - - Dialog - DC -
frmAttachments Y Y Y Sizable - -C Child
frmCopyStruct Y - - Dialog - DC -
frmDatabase Y Y Y Sizable - -- Child

Cbox This column tells you whether the form has a ControlBox. If it has one, it should also have

a custom icon. You might want to take a look at the icon in VB and verify it looks good.

Min, Max These columns tell you if there is a Minimize and a Maximize button on the form.

Border This is the BorderStyle property.

Menu This column displays Y if the form has a menu bar. It shows H if there are only hidden

menus, which are probably used for popup menus. This way you can find the main form(s)

in your application and also those dialogs that might define popup menus.

Btn This column displays D for Default button and C for Cancel button. Each dialog should

preferably have both. Other forms should probably have neither.

MDI This column shows MDI Parent and Child forms.

11. Detect side effects of "out" parameters

When a procedure changes the value of a ByRef parameter, the changes are propagated back to callers.

This can cause nasty side effects when a variable changes unintentionally. A ByRef parameter whose

value changes is called an out parameter. In most cases, the function return value is a more appropriate

way to return a value to callers.

Project Analyzer can list the out parameters for you to review:

1. Select Module members... in the Report menu.

2. Select Procedures with out parameters.

3. In the Parameter style combo box, select Detailed with param types or Detailed with param names.

4. Press OK.

12. Tweak Project Analyzer

Sometimes Project Analyzer is not giving you optimal results because of some suboptimal coding you

need to use. As an example, you need to use late binding, but Project Analyzer would work better with

early binding. You wish you could tell Project Analyzer more about your code, but you can't simply go

on and change the way your code works in VB.

Here's the solution. Project Analyzer internally defines a special compiler constant

#Const PROJECT_ANALYZER = True. You can use conditional compilation to define something just for

analysis purposes. Here's an example:

#If PROJECT_ANALYZER Then
 Dim x As MyForm ' Early binding, easy to analyze
#Else
 Dim x As Object ' Late binding, hard to analyze
#End If

Conclusion

You can use Project Analyzer in many ways not apparent at first sight. It pays off to examine the help to

find hidden features and new ideas. Examine the menus, right-click every list control for context menus,

press the toolbar buttons. If you find a new way to use Project Analyzer for a practical task, feel free to

tell Aivosto about it. It could well be worth documenting and sharing with other users.

Code analyses you didn't know about

URN:NBN:fi-fe201003181511

https://www.aivosto.com/project/help/

