unction checkCreditCar

Credit Card Validation JavaScript Function
cardnumber, cardname

Source: http://www.braemoor.co.uk/software/

Published 2010 at www.aivosto.com by permission of John Gardner

This routine checks the credit card number. The following checks are made:
1. A number has been provided

2. The number is a right length for the card

3. The number has an appropriate prefix for the card

4. The number has a valid modulus 10 number check digit if required

If the validation fails an error is reported.

The structure of credit card formats was gleaned from a variety of sources on
the web, although the best is probably on Wikepedia ("Credit card number"):
http://en.wikipedia.org/wiki/Credit_card_number

Array to hold the permitted
card characteristics

Parameters: !
cardnumber number on the card var cards = new Array();
cardname name of card as defined in the card list below

Author: John Gardner

Date: 1st November 2003

Updated: 26th Feb. 2005 Additional cards added by request
Updated: 27th Nov. 2006 Additional cards added from Wikipedia
Updated: 18th Jan. 2008 Additional cards added from Wikipedia

Updated: 26th Nov. 2008 ~ Maestro cards extended cards [0] = {name: "Visa", length: "13,16", prefixes:. "4", checkdigit: true}; .

Updated: 19th Jun. 2009 Laser cards extended from Wikipedia cards [1] = {name: "MasterCard", length: "16", prefixes: "51,52,53,54,55", checkdigit: true};

If a credit card number is invalid, an error reason is loaded into the cards [2] = {name: "DinersClub", length: "14,16", prefixes: "305, 36, 38, 54,55", checkdigit:

global ccErrorNo variable. This can be be used to index into the global error true};

string array to report the reason to the user if required: cards [3] = {name: "CarteBlanche", length: "14", prefixes: "300,301,302,303,304,305", checkdigit:

e.g. if (IcheckCreditCard (number, name) alert (ccErrors(ccErrorNo); true};

cards [4] = {name: "AmEX", length: "15", prefixes: "34,37", checkdigit: true};

cards [5] = {name: "Discover", length: "16", prefixes: "6011,622,64,65", checkdigit: true};

cards [6] = {name: "JCB", length: "16", prefixes: "35", checkdigit: true};

cards [7] = {name: "enRoute", length: "15", prefixes: "2014,2149", checkdigit: true};

cards [8] = {name: "Solo", length: "16,18,19", prefixes: "6334, 6767", checkdigit: true};

cards [9] = {name: "Switch", length: "16,18,19", prefixes: "4903,4905,4911,4936,564182,633110,6333,6759",
checkdigit: true};

cards [10] = {name: "Maestro", length: "12,13,14,15,16,18,19", prefixes: "5018,5020,5038,6304,6759,6761",
checkdigit: true};

cards [11] = {name: "VisaElectron", length: "16", prefixes: "417500,4917,4913,4508,4844",

checkdigit: true};

cards [12] = {name: "LaserCard", length: "16,17,18,19", prefixes: "6304,6706,6771,6709", checkdigit:

true};

var ccErrorNo = 0;

var ccErrors = new Array ()

ccErrors [0] = "Unknown card type";

ccErrors [1] = "No card number provided";

ccErrors [2] = "Credit card number is in invalid format";

ccErrors [3] = "Credit card number is invalid";

ccErrors [4] = "Credit card number has an inappropriate number of digits";

var cardType = -1;
var i=0

See if it is this card
(ignoring the case of the i<cards.length ?
string)

ardname.toLowerCase
== cards[i]
.name.toLowerCase() ?

If card type not found,
report an error

Ensure that the user has
provided a credit card
number

ccErrorNo = 0;
return false;

cardnumber = cardnumber.replace| Check that the
(Nsfg, ™); number is numeric

ccErrorNo = 1;
return false;

var cardNo = cardnumber
var cardexp = /N[0-9}{13,19}$/;

ccErrorNo = 2;
return false;

checksum % 10 =0 ?

See if all is OK by seeing if the length was valid. We only

check the
length if all else was hunky dory.

The qedn card is in the Tengthvalid ?
required format.

retumn true; ccErrorNo = 4;
return false;

Define the cards we support. You may add addtional card types.
Name: As in the selection box of the form - must be same as user's
Length: List of possible valid lengths of the card number for the card
prefixes: List of possible prefixes for the card

checkdigit Boolean to say whether there is a check digit

/

Establish card type

/

Now remove any spaces from
the credit card number

_—

Now check the modulus 10
check digit - if required

& running checksum total
|

All done - if checksum is divi
modulus 10.
If not, report an error.

cards[cardType
.checkdigit ?

o var calc;

var checksum = 0;

next char to process
takes value of 1 or 2

Process each digit one by
one starting at the right

i = cardNo.length - 1

ible by 10, it is a valid Extract the next digit and
multiply by 1 or 2 on

alternative digits.

If the result is in two
digits add 1 to the checksum
total

The following are the
card-specific checks we
undertake.

calc = Number
(cardNo.charAt(i)) * j;

var LengthValid = false;
var PrefixValid = false;
var undefined;

We use these for holding
the valid lengths and
prefixes of a card type

ccErrorNo = 3;
return false;

Load an array with the
valid prefixes for
this card

var prefix = new Array ();
var lengths = new Array ();

Add the units element to
the checksum total

checksum = checksum + 1;
calc = calc - 10;

'

prefix =

")

cards[cardType].prefixes.split

Now see if any of them
match what we have in the
card number

checksum =
checksum + calc;

Switch the value of

If it isn't a valid prefix
there's no point at looking
at the length

IPrefixValid ?

See if the length is valid
for this card

i<prefix.length ?

var exp = new RegExp ("
+ prefix[i]);

inggths = cards[cardType].length.split(",");

j=0

ccErrorNo = 3;
return false;

cardNo.length
== lengths[j] ?

LengthValid = true;

j<lengths.length ?

PrefixValid = true;

