
The credit card is in the
required format.

See if all is OK by seeing if the length was valid. We only
check the
length if all else was hunky dory.

See if the length is valid
for this card

If it isn't a valid prefix
there's no point at looking
at the length

Now see if any of them
match what we have in the
card number

Load an array with the
valid prefixes for
this card

We use these for holding
the valid lengths and
prefixes of a card type

Switch the value of j

Add the units element to
the checksum total

If the result is in two
digits add 1 to the checksum
total

Extract the next digit and
multiply by 1 or 2 on
alternative digits.

All done - if checksum is divisible by 10, it is a valid
modulus 10.
If not, report an error.

Process each digit one by
one starting at the right

takes value of 1 or 2

next char to process

running checksum total

The following are the
card-specific checks we
undertake.

Now check the modulus 10
check digit - if required

Check that the
number is numeric

Now remove any spaces from
the credit card number

Ensure that the user has
provided a credit card
number

See if it is this card
(ignoring the case of the
string)

If card type not found,
report an error

Establish card type

Define the cards we support. You may add addtional card types.
Name: As in the selection box of the form - must be same as user's
Length: List of possible valid lengths of the card number for the card
prefixes: List of possible prefixes for the card
checkdigit Boolean to say whether there is a check digit

Array to hold the permitted
card characteristics

Credit Card Validation JavaScript Function
Source: http://www.braemoor.co.uk/software/
Published 2010 at www.aivosto.com by permission of John Gardner
This routine checks the credit card number. The following checks are made:
1. A number has been provided
2. The number is a right length for the card
3. The number has an appropriate prefix for the card
4. The number has a valid modulus 10 number check digit if required
If the validation fails an error is reported.
The structure of credit card formats was gleaned from a variety of sources on
the web, although the best is probably on Wikepedia ("Credit card number"):
http://en.wikipedia.org/wiki/Credit_card_number
Parameters:
cardnumber number on the card
cardname name of card as defined in the card list below
Author: John Gardner
Date: 1st November 2003
Updated: 26th Feb. 2005 Additional cards added by request
Updated: 27th Nov. 2006 Additional cards added from Wikipedia
Updated: 18th Jan. 2008 Additional cards added from Wikipedia
Updated: 26th Nov. 2008 Maestro cards extended
Updated: 19th Jun. 2009 Laser cards extended from Wikipedia
If a credit card number is invalid, an error reason is loaded into the
global ccErrorNo variable. This can be be used to index into the global error
string array to report the reason to the user if required:
e.g. if (!checkCreditCard (number, name) alert (ccErrors(ccErrorNo);

var ccErrorNo = 0;

var ccErrors = new Array ()
ccErrors [0] = "Unknown card type";
ccErrors [1] = "No card number provided";
ccErrors [2] = "Credit card number is in invalid format";
ccErrors [3] = "Credit card number is invalid";
ccErrors [4] = "Credit card number has an inappropriate number of digits";

function checkCreditCard
(cardnumber, cardname)

var cards = new Array();

cards [0] = {name: "Visa", length: "13,16", prefixes: "4", checkdigit: true};
cards [1] = {name: "MasterCard", length: "16", prefixes: "51,52,53,54,55", checkdigit: true};
cards [2] = {name: "DinersClub", length: "14,16", prefixes: "305, 36, 38, 54,55", checkdigit:
true};
cards [3] = {name: "CarteBlanche", length: "14", prefixes: "300,301,302,303,304,305", checkdigit:
true};
cards [4] = {name: "AmEx", length: "15", prefixes: "34,37", checkdigit: true};
cards [5] = {name: "Discover", length: "16", prefixes: "6011,622,64,65", checkdigit: true};
cards [6] = {name: "JCB", length: "16", prefixes: "35", checkdigit: true};
cards [7] = {name: "enRoute", length: "15", prefixes: "2014,2149", checkdigit: true};
cards [8] = {name: "Solo", length: "16,18,19", prefixes: "6334, 6767", checkdigit: true};
cards [9] = {name: "Switch", length: "16,18,19", prefixes: "4903,4905,4911,4936,564182,633110,6333,6759",
checkdigit: true};
cards [10] = {name: "Maestro", length: "12,13,14,15,16,18,19", prefixes: "5018,5020,5038,6304,6759,6761",
checkdigit: true};
cards [11] = {name: "VisaElectron", length: "16", prefixes: "417500,4917,4913,4508,4844",
checkdigit: true};
cards [12] = {name: "LaserCard", length: "16,17,18,19", prefixes: "6304,6706,6771,6709", checkdigit:
true};

var cardType = -1;
var i=0

i<cards.length ?

i++

cardname.toLowerCase ()
== cards[i]

.name.toLowerCase() ?

cardType = i;

cardType == -1 ?

ccErrorNo = 0;
return false;

cardnumber.length == 0 ?

ccErrorNo = 1;
return false;

cardnumber = cardnumber.replace
(/\s/g, "");

var cardNo = cardnumber
var cardexp = /^[0-9]{13,19}$/;

!cardexp.exec(cardNo) ?

ccErrorNo = 2;
return false;

cards[cardType]
.checkdigit ?

var checksum = 0;

var mychar = "";

var j = 1;

var calc;
i = cardNo.length - 1

i >= 0 ?

i--

calc = Number
(cardNo.charAt(i)) * j;

calc > 9 ?

checksum = checksum + 1;
calc = calc - 10;

checksum =
checksum + calc;

j ==1 ?

j = 2j = 1

checksum % 10 != 0 ?

ccErrorNo = 3;
return false;

var LengthValid = false;
var PrefixValid = false;
var undefined;

var prefix = new Array ();
var lengths = new Array ();

prefix =
cards[cardType].prefixes.split
(",");

i=0

i<prefix.length ?

var exp = new RegExp ("^"
+ prefix[i]);

i++

exp.test (cardNo) ?

PrefixValid = true;

!PrefixValid ?

ccErrorNo = 3;
return false;

lengths = cards[cardType].length.split(",");
j=0

j<lengths.length ?

cardNo.length
== lengths[j] ?

j++

LengthValid = true;

!LengthValid ?

ccErrorNo = 4;
return false;return true;

End

End

Yes

No

NoYes

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

Yes

No

YesNo

Yes

No

YesNo

No

Yes

Yes

No

YesNo

No
Yes

YesNo

