
if left side isn't, right
side is larger

scan right partition

scan left partition

is left side
piece larger?

repeat until L2 >= r2

the value must not
stay in the array! end while(L < r)

span is L:r

end while(sp>0)
end QuickSort

Loads First and
Last onto the stack

Mark the local
stack as empty.

Quicksort, iterative version
Source: http://en.wikipedia.org/wiki/Quicksort
This code is licensed under the GNU Free Documentation License.
It is from the Wikipedia article "Quicksort" dated 2006-11-07.
Explicit recursion can be avoided using an iterative form of
quicksort that replaces the call stack by an explicit stack data
structure. The disadvantage is considerably greater complexity.
A is an array to be sorted for elements First to Last inclusive.
v is a variable of type corresponding to the sort key of array A.
sp is a stack pointer to a small local data structure used by Push and Pop.
something like local arrays SaveA(32), SaveB(32) of the same type as L and R,
where Push(x,y); means sp:=sp + 1; SaveA(sp):=x; SaveB(sp):=y;
and Pop(x,y); means x:=SaveA(sp); y:=SaveB(sp); sp:=sp - 1;
var L,L2,p,r,r2: longint; of a type equivalent to First and Last.

QuickSort(A,First,Last)

var v,sp,L,L2,p,r,r2;

sp=0;

Push(First,Last);

sp > 0 ?

Pop(L, r)/2;

L < r ?

p = (L+r)/2;

v = A[p].key;
L2 = L;
r2 = r;

L2 < r2 ?

A[L2].key < v ?

L2 = L2+L;

A[r2].key > v ?

L2 <= r2 ? r2 = r2-L;

r2-L > r-L2 ?

L<r2 ?

L = L2;

Push(L,r2);

L2 < r ?

Push(L2,r);
r = r2;

End

YesNo

NoYes

Yes

No

No
Yes

No

Yes

No

Yes No

No

Yes

No

Yes

L2 equals r2 ?

L2 = L2 + L;
r2 = r2 - L;

Swap(A[L2],A[r2]);

Yes

No

Yes

