Quicksort, iterative version

Source: http://en.wikipedia.org/wiki/Quicksort
This code is licensed under the GNU Free Documentation License.

It is from the Wikipedia article "Quicksort" dated 2006-11-07.
Explicit recursion can be avoided using an iterative form of

quicksort that replaces the call stack by an explicit stack data
structure. The disadvantage is considerably greater complexity.
A'is an array to be sorted for elements First to Last inclusive.

v is a variable of type corresponding to the sort key of array A.

sp is a stack pointer to a small local data structure used by Push and Pop.
something like local arrays SaveA(32), SaveB(32) of the same type as L and R,

where Push(x,y); means sp:=sp + 1; SaveA(sp):=x; SaveB(sp):=y;
and Pop(x,y); means x:=SaveA(sp); y:=SaveB(sp); sp:=sp - 1;

var L,L.2,p,r,r2: longint; of a type equivalent to First and Last.

QuickSort(@

var v,sp,L,L2,p,r,r2;
|§: | Last onto the stack

end while(sp>0)
end QuickSort

= | the value must not
p= (L2 stay in the array!

v = Alp].key;
L2=1;
r2=r

repeat until L2 >=r2

scan left partition

\

S

Push(First,Last);

end while(L <r)

is left side
piece larger?

span is Lir

Mark the local
stack as empty.

Loads First and

if left side isn't, right

side is larger

Push(L2,r);
r=r2;

L2 equals r2 ?

Swap(A[L2],A[r2]);

L2=L2+L;
r2=r2-1;

